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Abstract Super-resolution (SR) image reconstruction

refers to a process that produces a high-resolution (HR)

image from a sequence of low-resolution images that are

noisy, blurred, and downsampled. Blind SR is often nec-

essary when the blurring function is unknown. In this pa-

per, to reduce registration errors, we present a new joint

maximum a posteriori (MAP) formulation to integrate

image registration into blind image SR reconstruction. The

formulation is built upon the MAP framework, which ju-

diciously combines image registration, blur identification,

and super-resolution. A cyclic coordinate descent opti-

mization procedure is developed to solve the MAP for-

mulation, in which the registration parameters, blurring

function, and HR image are estimated in an alternative

manner, given the two others, respectively. The proposed

algorithm is tested using simulated as well as real-life

images. The experimental results indicate that the proposed

algorithm has considerable effectiveness in terms of both

quantitative measurements and visual evaluation.

Keywords Joint estimation � Maximum a posteriori

(MAP) � Image registration � Blur identification �
Super-resolution

1 Introduction

Super-resolution (SR) image reconstruction refers to a

process that produces a high-resolution (HR) image from a

sequence of observed low-resolution (LR) images that are

noisy, blurred, and downsampled [1, 2]. Image SR has a

variety of applications, including remote sensing [3, 4],

video frame freezing, medical diagnostics [5], and military

information gathering, etc. The SR problem was first pro-

posed by Tsai and Huang [6] in the frequency domain.

They proposed a formulation for the reconstruction of a HR

image from a set of undersampled, aliased but noise-free

LR images. Their formulation was extended by Kim et al.

[7] to consider observation noise as well as the effects of

spatial blurring. Then, Kim and Su [8] extended their work

by considering different blurs for each LR image. In the

spatial domain, typical reconstruction methods include in-

terpolation [9, 10], iterative back projection (IBP) [11],

projection onto convex sets (POCS) [12–14], Baye-

sian/maximum a posteriori (MAP) [15–18], adaptive fil-

tering [19], and sparse coding [20].

Before SR image reconstruction can be carried out, blur

identification must be performed to estimate the blurring

functions in the image formation process. The precise es-

timation of the blurring function is very important for the

reconstruction of the HR image [21]. Most of the SR image

reconstruction algorithms assume a priori known blur [15–

18]. However, in many real applications, this assumption is

impractical as it is difficult to predict the blur precisely.

Consequently, this motivates the study of blind SR image

reconstruction, which is a process to perform HR image

reconstruction with limited or no knowledge of the blurring

function [22]. A few investigations have been carried out to

estimate the HR image and blurring function simultane-

ously, to reduce the effect of blur estimation error. Authors
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in [23–25] proposed blind SR that can handle parametric

blur models with one parameter. This restriction is, un-

fortunately, very limiting for most real applications. To our

knowledge, early attempts at theoretical blind SR with an

arbitrary blurring function have appeared in [26, 27]. Then,

He et al. [22] developed a new soft blur learning scheme,

which attempts to integrate the parametric information of

the blurring function into the algorithm. Sroubek et al. [28]

proposed a unifying method that simultaneously estimates

the volatile blurs and HR image without any prior knowl-

edge of the blurs and the original image.

Image registration is another process that must be per-

formed to estimate the subpixel shifts between LR images

before image SR reconstruction, and plays a critical role in

SR image reconstruction [29, 30]. Due to the presence of

aliasing in the captured LR images, most existing registra-

tion algorithms for aliased images, such as the algorithms

described in [31–33], still experience subpixel errors [34]. In

the case of non-blind SR where blurring functions are as-

sumed known, many works have been carried out with the

emphasis on reducing the effect of registration errors. The

simultaneous image registration and reconstruction ap-

proach is a quite important approach. Tom and Katsaggelos

[35] developed a simultaneous registration and reconstruc-

tion approach, in which they formulated the SR problem in

the form of a maximum likelihood problem and solved it

using the expectation–maximization algorithm. Hardie et al.

[36] developed an approach within the MAP framework to

simultaneously estimate the image registration parameters

and the HR image. Segall et al. [37, 38] presented a note-

worthy approach involving the joint estimation of dense

motion vectors and HR images for compressed video.

Woods et al. [39] presented complex stochastic methods in

which the parameters of registration, noise and image

statistics are estimated jointly based on the available ob-

servations. In [40], Chung et al. proposed a nonlinear cost

function, and estimated the registration parameters and the

HR image using the Gauss–Newton method. Considering a

more generic motion model that includes both translation

and rotation, He et al. [34] proposed an iterative scheme

based on a non-linear least squares method to estimate the

motion parameters and the HR image simultaneously. More

recently, Tian and Yap presented a new framework for joint

image registration and HR image reconstruction from

multiple LR observations with zooming motion.

While in the case of blind SR, there are few recon-

struction methods considering registration errors. The

conventional blind SR algorithms are performed in two

disjoint stages, namely, (1) image registration from LR

images, followed by (2) simultaneous estimation of both

the HR image and blurring function. Generally speaking,

these blind SR algorithms ignore registration errors and

assume that the estimated motion parameters of existing

registration methods are error free. Obviously, this as-

sumption is impractical in many real applications. Thus,

the registration errors will affect the subsequent blind SR

image reconstruction to certain extent.

In view of this, this paper proposes a new blind SR

reconstruction method considering image registration er-

rors, which establishes a MAP framework for joint image

registration, blur identification, and HR image reconstruc-

tion. As image registration, blur identification, and SR re-

construction are mutually interdependent and influence

each other, an ideal approach is to address them simulta-

neously. To the best of our knowledge, to date, only two

among these three processes have been simultaneously

addressed, such as the joint estimation of image registration

and reconstruction [30, 34–40] and that of arbitrary blur

and image reconstruction [22, 26–28]. The main contri-

bution of this paper is that we integrate image registration

into blind SR image reconstruction. Thus, the registration

information is iteratively updated along with the progres-

sively estimated blurring function, and HR image, in a

cyclic manner. This is more promising as more accurate

registration parameters can be determined, thereby im-

proving the performance of the blur identification and SR

reconstruction. This algorithm reinforces the interdepen-

dence of the registration parameters, blurring function, and

HR image in a mutually beneficial manner. Experimental

results show that the proposed joint method is effective in

performing image registration, blur identification, and SR

reconstruction for simulated, as well as real-life images.

The remainder of the paper is organized as follows. In

Sect. 2, the SR observation model is described. The joint

MAP estimation problem is formulated in Sect. 3. In Sect.

4, the joint optimization procedure to solve the registration

parameters, blurring function, and HR image is presented.

Experimental results are provided in Sect. 5, and Sect. 6

concludes the paper.

2 Observation Model

The image observation model is employed to relate the

desired referenced HR image to the observed LR images.

Typically, the imaging process involves warping, followed

by blurring and downsampling to generate LR images from

the HR image. Let the underlying HR image be denoted in

the vector form by z ¼ z1; z2; . . .; zL1N1�L2N2
½ �T , where

L1N1 9 L2N2 is the HR image size. Letting L1 and L2 de-

note the downsampling factors in the horizontal and ver-

tical directions, respectively, each observed LR image has

the size N1 9 N2. Thus, the LR image can be represented

as gk ¼ gk;1; gk;2; . . .; gk;N1�N2

� �T
, where k ¼ 1; 2; . . .;P,

with P being the number of LR images. Assuming that
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each observed image is contaminated by additive noise, the

observation model can be represented as [1]

gk ¼ DBkMkðsÞzþ nk; ð1Þ

where Mk(s) is the warp matrix with the size of L1N1L2N2

9 L1N1L2N2, s represents the registration information, Bk

represents the camera blur matrix also of size L1N1L2N2 9

L1N1L2N2, D is a N1N2 9 L1N1L2N2 downsampling matrix,

and nk represents the N1N2 9 1 noise vector. Figure 1

illustrates (1).

Similar to most work on SR [1, 22], it is assumed in this

paper that the imaging blur is spatial shift-invariant and the

warping between different LR images is translational.

Using the commutative property of convolution [41], (1)

may be written as

gk ¼ DMkðsÞBkzþ nk ¼ DMkðsÞZbk þ nk; ð2Þ

where Bkz, the blurry version of the HR image, can also be

written as Zbk, by introducing a L1N1L2N2 9 r1r2 matrix

Z, which is constructed from image z. bk is the blur kernel

with the size of r1r2 9 1; here r1 9 r2 represents the sup-

port of the blurring function. Let the full set of P LR im-

ages, blurring functions and registration parameters be

denoted by g ¼ g1; g2; . . .; gPf g, b ¼ b1; b2; . . .; bPf g; and
s ¼ s1; s2; . . .; sPf g, respectively. By stacking (2), we get

g ¼ DMðsÞBzþ n ¼ DMðsÞZbþ n: ð3Þ

3 Problem Formulation

The purpose is to realize the joint MAP estimate of HR

image z, blurring functions b, and registration information

s, given the observed LR images g. The estimate can be

computed by

ẑ; b̂; ŝ ¼ argmax pðz; s; bjgÞf g: ð4Þ

Applying Bayes’ rule, after some manipulation, we can

get

ẑ; b̂; ŝ ¼ argmax log pðgjz; b; sÞf
þ log pðzÞ þ log pðbÞ þ log pðsÞg:

ð5Þ

The central task then becomes constructing the four

probability density functions (PDFs) so as to enable the

MAP estimation. The PDF p(g|z, b, s) provides a measure

of the conformance of the estimated image to the observed

images, according to the image observation model. It is

determined by the probability density of the noise vector in

(3). Assuming that the noise n is additive white Gaussian

noise (AWGN) with variance r2, the likelihood p(g|z, b, s)

can be given by

pðgjz; b; sÞ ¼ 1

C1

exp � g� DBMðsÞzk k2

2r2

 !

; ð6Þ

where C1 is a constant.

The PDF p(z) is the image prior, which imposes the

spatial constraints on the image. For the image prior term,

the Laplacian prior [17, 39] and the Gauss–Markov prior

[36] are commonly employed. A common criticism of

these regularization methods is that detailed information in

the estimates tends to be overly smoothed [32]. Therefore,

an edge-preserving Huber–Markov image prior is em-

ployed in this paper. This prior can effectively preserve the

edge and detailed information in the image [16]. The Hu-

ber–Markov prior has the following form:

pðzÞ ¼ 1

C2

exp � 1

2k1

X

x;y

X

c2C
qðdcðzx;yÞÞ

 !

: ð7Þ

In this expression, C2 is a constant, c is a clique within

the set of all image cliques C, and the quantity dc(zx,y) is a

spatial activity measure of pixel zx,y, which is often formed

by first- or second-order differences. The potential function

q(i) is the Huber function, defined as

qðiÞ ¼ i2 jij � l
2ljij � l2 jij[ l

�
ð8Þ

where l is a threshold parameter separating the quadratic

and linear regions [16]. As for the function dc(zx,y), we

compute the following finite second-order differences in

four adjacent cliques for every location (x, y) in the SR

image:

Fig. 1 Block diagram illustration of the observation model (1), where the desired HR image is at the extreme left, and the observed image at the

extreme right [18]
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d1c ðzx;yÞ ¼ zx�1;y � 2zx;y þ zxþ1;y

d2c ðzx;yÞ ¼ zx;y�1 � 2zx;y þ zx;yþ1

d3c ðzx;yÞ ¼
1
ffiffiffi
2

p zx�1;y�1 � 2zx;y þ zxþ1;yþ1

� �

d4c ðzx;yÞ ¼
1
ffiffiffi
2

p zx�1;yþ1 � 2zx;y þ zxþ1;y�1

� �

: ð9Þ

The PDF p(b) is the blur function prior, which imposes

the spatial constraints in the blur domain. As the blurring

function is unknown, we should take the piecewise

smoothness property of the blurring function into consid-

eration. In this paper, the following Laplacian prior model

[25, 27] is used:

pðbÞ ¼ 1

C3

exp �k2 Qbk k2
� �

; ð10Þ

where k2 is a parameter that controls the contribution of the

blurring function prior model, and Q is a 2-D Laplacian

here.

The choice of a prior model for the registration pa-

rameters is highly application specific [36]. If there are

relatively few registration parameters to estimate, a ‘‘no

preference’’ prior can yield a useful solution. Considering

that a translational motion model is used in this paper, there

are only two registration parameters for each LR image,

and a ‘‘no preference’’ prior is used here. Thus, the esti-

mation of the registration parameters reduces to an ML

estimate [36].

Substituting (6), (7), and (10) into (5), after some ma-

nipulation, theminimization cost function is obtained in (11)

ẑ; b̂; ŝ ¼ argmin g� DMðsÞBzk k2þa
X

x;y

X

c2C
qðdcðzx;yÞÞ

(

þb Qbk k2g: ð11Þ

This cost function is used in the optimization procedure

introduced subsequently.

4 Optimization Procedure

It is noted that the cost function (11), as a joint function of

three sets of variables, is not convex. Therefore, a cyclic

coordinate descent optimization procedure is developed to

solve the unknowns. The registration parameters, blurring

function, and HR image are found in an alternate manner,

given the two others, respectively.

4.1 Updating Unknowns

Given the full set of registration parameters s and blurring

functions b, the desired HR image z can be updated by

minimizing the following cost function:

E1ðzÞ ¼ g� DMðsÞBzk k2þa
X

x;y

X

c2C
qðdcðzx;yÞÞ; ð12Þ

which is composed of the two terms in (11) that contain the

sole unknown quantity z. This is a regularized optimization

problem. To solve the desired HR image z, we use the

method of conjugate gradients.

Given the estimate of HR image z and registration in-

formation s, the cost function to estimate the blurring

function b is given by:

E2ðbÞ ¼ g� DMðsÞZbk k2þb Qbk k2: ð13Þ

It is common to assume that the blurring function is

positive and preserves image brightness, so the blurring

function should satisfy the following constraints:

bkði; jÞ� 0 and
X

i;j
bkði; jÞ ¼ 1: ð14Þ

Therefore, we can restrict the intensity values of the

blurring function between 0 and 1. In order to enforce these

bounds, we solve (13) as a constrained optimization

problem. Constrained optimization problems are more

computationally demanding, but we can afford it in this

case since the size of the blurring function is much smaller

than the size of HR image.

Given the estimate of the HR image z and blurring

function b, the cost function to estimate the registration

information s can be given as

E3ðsÞ ¼ g� DMðsÞBzk k2: ð15Þ

A search is required to minimize (15) with respect to

s. Pyramidal search strategies designed for traditional block

matching can be employed here [36]. As opposed to the

two-stage blind SR methods that perform registration on

the LR images in the first stage, the image registration is

performed iteratively here, using the progressively esti-

mated HR image and blurring function. It is believed that

more precise registration parameters can be obtained,

thereby enhancing the performance of the HR reconstruc-

tion and blur identification.

4.2 Initialization

Before updating all these unknowns, the HR image, reg-

istration information, and blurring function must be initi-

ated. The initial HR image is obtained using bicubic

interpolation of the reference LR image. The registration

parameters are initiated by implementing an existing reg-

istration algorithm, such as the parameter model-based

image registration algorithm [32]. The initial estimate of

the blurring function is obtained using the method de-

scribed in [27], which should not be far away from the real

values. The two regularization parameters in (11) are
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determined heuristically, according to quantitative eval-

uations or visual assessments in our experiments. That is, a

set of properly chosen parameter values are tested, and the

values which correspond to the optimal quantitative eval-

uations and visual assessments are selected.

A block diagram of the whole optimization procedure is

shown in Fig. 2. The number of iteration (N = 10) is used

as a stopping criterion in this paper.

5 Experimental Results

In this section, we illustrate the performance of the pro-

posed method on two different sets of data: simulated and

real-life images. To evaluate the performance, the nor-

malized mean-square error (NMSE) and peak signal-to-

noise ratio (PSNR) [42, 43] were employed as quantitative

measures for the estimated registration information, blur-

ring function, and HR image in the simulated experiments.

Generally speaking, a good algorithm is reflected by low

NMSE and high PSNR.

5.1 Simulated Images

We conducted simulation experiments to perform blind SR

on multiple noisy LR images with different blur levels. The

‘‘cameraman’’ image in Fig. 3a was selected as the test

image. To generate the LR images, the HR image was first

shifted with 0, 1, 2, or 3 HR pixels in the horizontal and

vertical directions, respectively, and then blurred with a

symmetric Gaussian blur before downsampling by a

decimation factor of 4. The LR images were further de-

graded by AWGN, yielding a signal-to-noise ratio (SNR)

of 30 dB. We experiment with Gaussian blurs of variances

0.75, 1.0,, and 1.5 and try to estimate the blurring func-

tions, assuming that the support of the PSF has been

known. For each level of Gaussian blur, 16 synthetic de-

graded images are generated and used by a resolution en-

hancement factor of 4 in this experiment. The two-stage

disjoint blind image SR method, which doesn’t consider

image registration errors, was utilized as the benchmark

algorithm of the proposed method. In addition, the image

SR reconstruction with the exactly known blur and regis-

tration information, was also applied to the observed LR

images to give full comparisons with the experimental re-

sults of the proposed method. The two-stage disjoint blind

SR method was implemented with two steps of indepen-

dent image registration procedure over the LR observed

images and solving the MAP cost function in (11) with

respect to the HR image and blurring function, iteratively,

which is very similar to the methods in [20], except for the

types of blurring function and image priors utilized to en-

sure the fairness of comparisons. Our proposed method was

run based on the procedure shown in Fig. 2. We performed

image registration using the translational parameter model-

based image registration algorithm, which is a special case

of the six-parameter affine model in [32]. SR reconstruc-

tion with known blur and registration information was

implemented by minimizing the cost function in (12), as-

suming that the blur and registration information were

exactly known.

The NMSE of the registration information under dif-

ferent Gaussian blur levels is given in Table 1. Comparing

the image registration information obtained with prede-

fined image registration method [32], the proposed method

updates the registration information using the progressively

estimated blurring function with the HR image and greatly

improves image registration accuracy. Tables 2 and 3, re-

spectively, show the NMSE of the estimated blurring

function and PSNR of the reconstructed HR images under

different Gaussian blur levels. From these tables, it is

clearly observed that the proposed method achieves a more

accurate blurring function and better reconstruction results

than the two-stage disjoint blind SR method without con-

sidering image registration errors. These observations fur-

ther reconfirm the NMSE results of the registration

information obtained with the proposed method with con-

sidering image registration errors in the blurring informa-

tion estimation and image reconstruction processes from

another perspective. Comparing our results with those of

the two-stage disjoint blind SR method, it is found that the

improvement of image registration has a direct effect on

the blur identification and SR reconstruction, thereby

LR Images

Initialization

Blur Identification

HR image estimation

Image registration

Convergence?

Registration
information

HR 
image

Blurring 
information

No

Yes

Fig. 2 Diagram of the joint MAP algorithm
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Fig. 3 SR reconstruction result of LR images with Gaussian blur of

variance 0.75. a Original HR image, b the referenced LR image,

c bicubic interpolation, d two-stage disjoint blind SR method without

considering image registration errors, and e proposed method and

f SR reconstruction result with exactly known blur and registration

information

Table 1 NMSE of the registration information under different Gaussian blur levels

Methods Variance = 0.75 Variance = 1.0 Variance = 1.5

Two-stage disjoint blind SR method without considering registration errors 0.7831 0.7850 0.7976

The proposed method 0.0458 0.0378 0.0351

Table 2 NMSE of the blurring function under different Gaussian blur levels

Methods Variance = 0.75 Variance = 1.0 Variance = 1.5

Two-stage disjoint blind SR method without considering registration errors 1.00 0.95 0.89

The proposed method 0.64 0.60 0.54

Table 3 PSNR of the reconstructed HR image under different Gaussian blur levels

Methods Variance = 0.75 Variance = 1.0 Variance = 1.5

Bicubic interpolation 22.56 22.53 22.46

Two-stage disjoint blind SR method without considering registration errors 25.71 25.55 25.21

The proposed method 26.04 25.79 25.36

SR reconstruction with exactly known blur and registration information 26.15 25.85 25.47
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improving the accuracy of estimated blur function and the

quality of the reconstructed HR image.

Now the emphasis is on the evaluation and analysis of

the reconstructed HR images. Here we compared the re-

constructed HR image results of the three sets of LR im-

ages, to validate the performance of the proposed method

under different Gaussian blur levels. The threshold pa-

rameter l in (8) is set as 5 in all three experiments. The SR

reconstruction results with Gaussian blurs of variances

0.75, 1.0, and 1.5 are illustrated in Figs. 3, 5, and 7, re-

spectively. To facilitate a better comparison, a region of

each is shown in detail in Figs. 4, 6, and 8, respectively.

Comparing the reconstruction results in Figs. 3, 4, 5, 6, 7,

and 8, it is obviously observed that the image reconstructed

by the two-stage disjoint blind SR method has much better

visual quality than the interpolated image. However, arti-

facts are displayed around the edges because of the exis-

tence of the image registration errors, such as at the right

elbow of the cameraman. The proposed method makes an

obvious improvement best described as a suppression of

these artifacts by considering the image registration errors

in the blurring information estimation and image recon-

struction processes, and obtains a very close result to the

SR reconstruction result with exactly known blur and

registration information. From the quantitative comparison

results given in Table 3, it is observed that quantitative

measures agree with the visual evaluation. Evidently, the

proposed algorithm outperforms the two-stage disjoint

blind SR algorithm, in terms of both the quantitative

measurements and visual evaluation, which validate the

effectiveness of considering the image registration errors

within the proposed image blind SR reconstruction

procedure.

5.2 Real-life Images

The real-life images experiment was conducted on the

‘‘castle’’ image sequence. We used four images with im-

age 1 as the referenced image, which is shown in Fig. 9a.

The parameter model-based image registration algorithm in

[32] was again used to estimate the registration parameters

from the LR images. Next, the two-stage disjoint blind SR

method without considering image registration errors and

our proposed method were run to perform blind image SR

reconstruction. Figure 9b–d shows the bicubic interpolated

image, the two-stage disjoint blind SR result and the result

by the proposed method, respectively. Sampled regions

cropped from Fig. 9b–d are depicted in Fig. 10a–c, re-

spectively. The parameters used for this example are set as

follows: a = 0.01, b = 10,000, and l = 5. From the fig-

ures, it is observed that the considerable clarity of the

images has been recovered by both the two-stage disjoint

Fig. 4 a–e Sampled regions cropped from Fig. 3(a), (c)–(f), respectively

H. Zhang et al.: A Blind Super-Resolution Reconstruction Method Considering Image Registration Errors

123



Fig. 5 SR reconstruction result of LR images with Gaussian blur of

variance 1.0. a Original HR image, b the referenced LR image,

c bicubic interpolation, d two-stage disjoint blind SR method without

considering image registration errors, and e proposed method and

f SR reconstruction result with exactly known blur and registration

information

Fig. 6 a–e Sampled regions cropped from Fig. 5(a), (c)–(f), respectively
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Fig. 7 SR reconstruction result of LR images with Gaussian blur of

variance 1.5. a Original HR image, b the referenced LR image,

c bicubic interpolation, d two-stage disjoint blind SR method without

considering image registration errors, and e proposed method and

f SR reconstruction result with exactly known blur and registration

information

Fig. 8 a–e Sampled regions cropped from Fig. 7(a), (c)–(f), respectively
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blind SR method and the proposed method. Further, it can

be seen that the result by our proposed method has fewer

artifacts than in the two-stage disjoint blind SR method, in

particular near the edges. Comparison reveals that our

approach is superior in handling real-life blind image SR,

as it is able to estimate image registration parameters ac-

curately, leading to superior blur identification and HR

image reconstruction.

6 Conclusion

This paper presents a new blind SR reconstruction method

by integrating image registration into blind image SR re-

construction to reduce the effect of registration errors, and

then a cyclic coordinate descent optimization procedure is

developed to solve the formulation. As opposed to the two-

stage blind SR methods that perform image registration and

blind SR reconstruction as disjoint processes, the new

framework enables image registration, blur identification,

and HR image reconstruction to be estimated and improved

progressively. The advantage of this algorithm is that im-

age registration information, blurring function, and the HR

image can benefit each other. The proposed algorithm was

tested on simulated, as well as real-life images. The ex-

perimental results validated that registration parameters,

blurring information, and the HR image can be noticeably

improved by implementing this algorithm. Nevertheless,

there may still be room for improvements to our optimal

method, to increase computational efficiency. Using more

robust prior models for the blurring function (e.g., the best-

fit parametric blur model [22]) may further improve the SR

results. These will be addressed in our future work.
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